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Abstract: The kinetics of the thermal C-C-cleavage reaction of the dimer of sarcosme 
anhydride 5 has been investigated between 295 and 333 °C in mesitytene. From the 
temperature dependence and from the release of strain on dissociation the cyclic a-peptide 
radical 6 was calculated to have a radical stabilization enthalpy (RSE) of-6.3 ± 1.3 kcal / tool 
thus indicating the absence of a synergistic capto-dative effect. © 1997 Elsevier Science Ltd. 

c~-Centered peptide radicals 1 (X = -C:O,  Y : Nil-)  are involved in the catalytic activity of some 
enzymes 5 but also play an important role in oxidative damages of proteins 6 and are responsible for protein 
degradation, protein- DNA cros~iinlclng 6k, fragmentation6g etc. which have s~Lmificant biological, pathological 
and medical consequences. 6 

The ready formation of these radicals has been attributed to their eapto-dative 2 substitution pattern. 7 This was 

supported by C-H bond strength arguments based on ab initio calculations and isodesmic reactions 6h,i and by 
experimental C-C-bond strengths 7 as obtained from the thermolysis of dimers of the model radicals 2. 7 The ab 
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initio CH-bond strengths, however, suffer from their large uncertainties and from their relative and not 
absolute nature. Radicals 2, on the other hand, for which we calculated radical stabilization entha~ies RSE 8 = 
-15.9 kcal / mol (X = Nil) and -18.2 kcal / mol (X = O) from the data in the literature, 7 are not appropriate 
models for peptide radicals 1 (X = --C-O, Y = NH-) because the radical centers in 2 are fl~nked by a free 

amino group and not by an amide type nitrogen. Radicals flanked by both a free amino group and a capto 
functionality (-COOCH3, 8a -COR, 8b -CN 8c) are the only typical radicals for which a synergistic capto-dative 
stab'dizatinn 2 has been experimentally shown to exist, so far. 1,8,9 

In recent years we have developed a protocol for the determination of radical stabilization enthalpies 
(RSE) of monosubstituted 10 and disubstituted 8 alkyl radicals 4 from the activation enthalpies AH* or 

dissociation entha~ies of C-C-cleavage reactions of the dimers 3, which can be obtained from the temperature 
dependence of the reaction rates or equilibrium constants. 8 
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From the difference of the RSE's of a disubstituted radical XYRC- 4 and the sum of  the RSE's of the 

corresponding two monosubstituted radicals XR2C. and YR2C. the synergistic stabilization of 4 is obtained. 
¢z-Amino-c~-carbonyl radicals 4 (X = -NR2, Y = -COR) have a synergistic stabilization of-9.7 kcal / mol, 8b 

c~-amino-(x-cyano aikylradicals 4 (Y = -CN) of-6.  l kcal / mol, 8c and c~-amino-a-ethoxycarbonyl radicals 

(Y = --COOC2H5) of-6.7 kcal / tool. 8a 

We now report a kinetic investigation of  the thermolysis of the more soluble meso form of the two 
diastereomers of the dimers of sarcosine anhydride 511 between 295-333 °C in mesityiene. 13 It is cleaved into 

two cyclic peptide radicals 6 which are trapped quantitatively byp-thiocresul f o ~ g  sarcosine anhydride 7 in 
a quantitative yield. 6 has been used fTequently as a model for peptide radicals. 6a-g, 14 
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The kinetics were followed by the ampoule technique under N 2 reference with GC-analysis of 5 and 7 
and first order kinetics were obtained. The activation parameters were calculated by the Eyring equation 

(Table 1). 

Table 1 Activation parameters of the homolytic bond dissociation reaction of an equilibrium mixture of meso- and D,L- 
513 alto 7 from kinetic measurements in mesitylene with an excess p-thiocresol as scavenger. 

AI-I ~ A S $ AC_r t a) RSE BDE(C-H) b) 

5 53.4 ± 1.3 14.0 ± 2.4 45.4 ± 2.0 -6.3 ± 1.3 92.4 

kcal/mol cal / (mol 3 K) kcal/mol kcal/mol kcal/mol 

a) 3150C, the temperature at which the half life time is 1 hour. b) BDE(C-H) = 98.7 kcal / mo115 + RSE 

MM2 force field calculations predict an average excess of 10.4 kcal / mol strain energy in the equilibrium 
nftxture o fmeso -  and D,L-513 over two moles of 7 released on bond dissociation. Taking this quantity into 

account and neglecting the geminal interactions of  the ct-carbamoyl and the ct-aoylamino substituents in the 
radical precursor 5 which are probably ,qmall, 8 a radical stabilization enthalpy RSE = -6.3 + 1,3 kcal / mol 

results for 6 and a C-H-bond dissociation enthalpy of  BDE(C-I-I) -- 92.4 kcal / mol in the 3-position ofT. In 
qualitative agreement with ab initio calculation 6h,i and with a .qma~ RSE of ~-carbamoyl alkyl radicals 16, the 
¢x-acylamino-ct-carbamoyl radical 6 is thermochemically substantially less stabilized than the ~-amino-c~- 
cabonyl radicals (RSE = -21.8 kcal / mol) 8b, c~-acylamino-a-ethoxycarbonyl (RSE = -14.8 kcal / mol) 8a and c~- 
amino-a-cyano radicals (RSE = -13.8 kcal/mol) 8c. 

An RSE of-6.3 'kca l / too l  is also in good agreement with the relatively high ESR aI-lc~-hfc of 17.5 
Gauss for the N-substituted alanine anhydride radical 8. 9 From this hfc and an observed linear aI-I0~-hfc / RSE 
relationship 17a an RSE = -8.6 kcal / mol for 8 can be calculated, aH~ - lffcs of a-centered glycine radicals in 
peptides range between 18 and 19 Gauss 18 suggesting an RSE of approximately -6.6 kcal / mol. 17b In 
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contrast the hfcs of the capto-dative stabilized radicals 2 (aI-I0 M  ̀= 10.9 G, 7b X=O and aI~ M~ = 11.73 G, 7a X 

=Nil) lead to values of RSE = -19.3 keal / mol and RSE = -17.9 keal / mol, respectively. 17a 

S 'N 
This result supports our previous suggestion 8 that a synergistic capto-dative effect is due to homo-amide 

resonance between an amino group and the earbonyl or nitrile capto group in capto-dative radicals and 
depends essentially on the availability of the lone pair on nitrogen for conjugation with the capto group. 
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The RSE = -6.3 kcal / mol of  6 is a good approximation for the gSE of  a-centered peptide radicals 

despite the cis-conformation of  6. It is expected that the KSE of such a radical center in a peptide chain, which 
has a trans-eonformation is slightly different. 6e 
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